

Brian Orr

Senior Asphalt Technologist

Isocyanate-based Asphalt Additive

Study Background

Research Project 1

PG Grading and UTI

Research Project 2

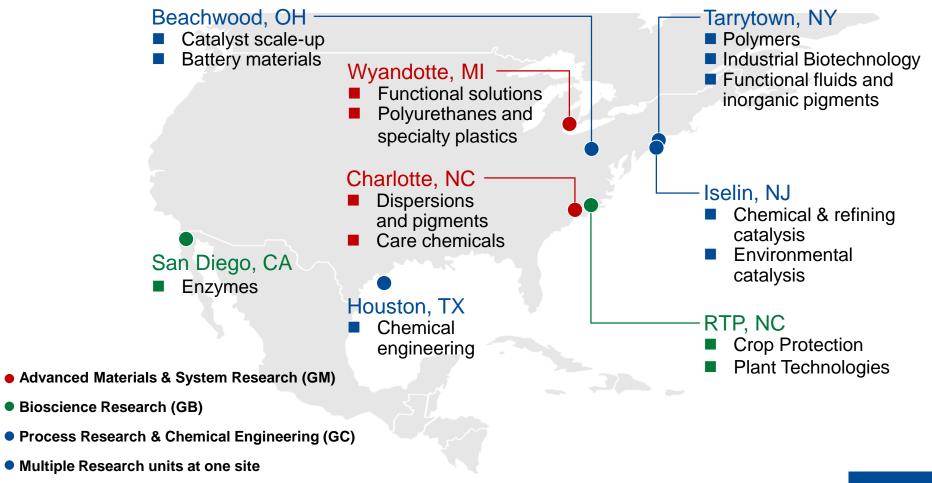
Rutting & Cracking

Paving Trials

Research Project 3

Formulation Study and Assessment

Binder Study and Assessment


• SBS + Isocyanate-based Modification

Conclusion

BASF Study Sponsor Located In Wyandotte, MI

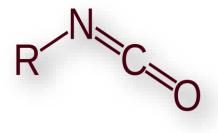
Study Background

- Asphalt has been modified since the 1960s to improve performance.
- 2. However, only a limited number of modifiers are approved in asphalt.
- 3. Use of alternative modifiers might yield several benefits.
 - Less disruption in construction
 due to shortage of modifiers
 - Improved performance
 - Reduced maintenance costs

PERFORMANCE MODIFIERS & ADDITIVES FOR IMPROVED SERVICE LIFE

	Modifiers & Additives	Generic Examples	Applications	
Improve Binder Performance	Elastic Polymers	SBS Block Copolymers SBR Latex & Natural Latex SB Diblock Reactive Terpolymers	Increase Binder Stiffness and Elasticity	
	Plastomers	Polyethylene & Other Alkenes Ethylene Vinyl Acetate (EVA) Ethylene propylene	Increase Binder Stiffness	
	Chemical Modifiers	Polyphosphoric Acid (PPA)	Increase Binder Stiffness	
	Organic Materials	Gilsonite	Increase Binder Stiffness	
	Low Temperature Modifiers	REOB Hard and natural asphalts Aromatic Oil Tall Oil Bio-based Oils	Reduce Low Temperature Stiffness	
	Recycle Materials	Ground Tire Rubber	Can Affect Elasticity	

4


Reactive Modifiers Show Great Promise in Asphalt

Current Reactive Polymers used as alternative modifiers in asphalt

- Reactive Terpolymers
- Reactive Copolymers
- Selected Epoxies

Isocyanate-based reactive modifiers

- Can these modifiers improve binder properties?
- Can these modifiers make binders equivalent to or better than conventionally modified binders?

Isocyanate-based Chemistry is Very Flexible

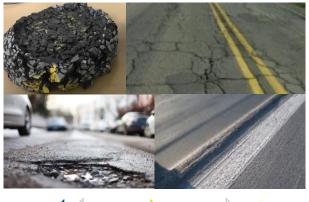
Common Industries & Applications

Construction Appliance Footwear Synthetic leather Spandex (textile) Fertilizer Automotive Roofing Tire Fill Pipe Liners Cast Elastomers Packaging

Polyurethanes – Excellent Functional Properties

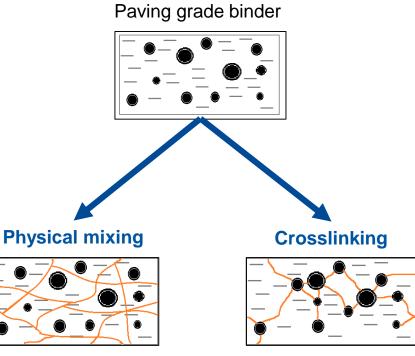
	Polyurethanes	Plastics	Rubber	Metal
Impact Resistance	+	-		
Elastic Properties (shape retention)	+	-		
Resilience (Rebound)	+	-		
Low Temperature Resistance	+	-		
Abrasion Resistance	+	-	-	
Load Bearing Capacity	+		-	
Chemical/Corrosion Resistance	+		-	-
Weight	+			-
Noise	+			-
Wear	+			-

Isocyanate-based Asphalt Modification– A New Paradigm


Current modification paradigm	Isocyanate-based modification paradigm
ELASTOMER & PLASTOMER	ADHESIVE
DRY SOLID	LIQUID
INCREASES VISCOSITY	LOW VISCOSITY
BLENDED & CAN SEPARATE	REACTIVE & DOES NOT SEPARATE
THERMOPLASTIC	THERMOSET

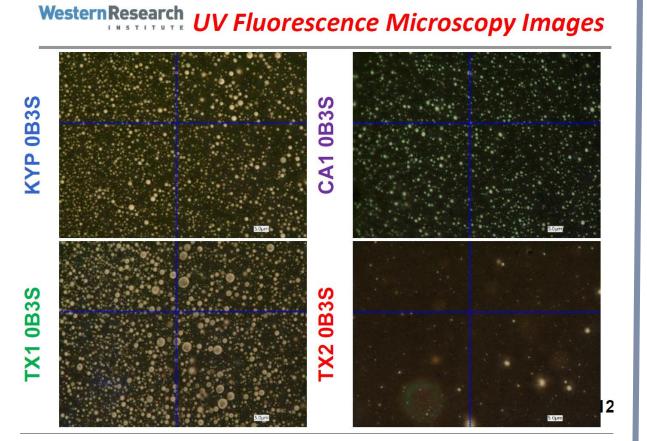
Isocyanate-based chemistries demonstrate utility in asphalt applications

Isocyanate-based Modification Improves Functional Properties

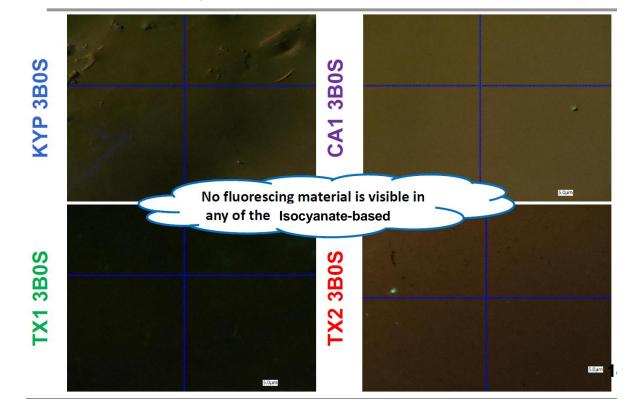

unmodified

Isocyanate-based modification

- Isocyanate-based modification uses crosslinking instead of physical mixing – increased binder performance and durability
- Isocyanate-based modification improves binder performance lower deformation of asphalt at high temperatures and same properties at low temperatures



Standard asphalt modifiers


Isocyanatebased Modifier

3% SBS or 3% Isocyanate-based Modification

WesternResearch UV Fluorescence Microscopy Images

Binder Study and Assessment

2019 Petersen Asphalt Research Conference Summary

TTI RESEARCH TEAM: Pravat Karki, PI Edith Arámbula Mercado, PI David E. Newcomb, Sr. PI

BASF We create chemistry

© Copyright 2020 BASF Corporation; All Rights Reserved

Western Research

TTI Research Objectives

Evaluate the performance of binders modified with SBS and binders modified with isocyanate-based modifier.

- Performance Grade
- UTI Expansion

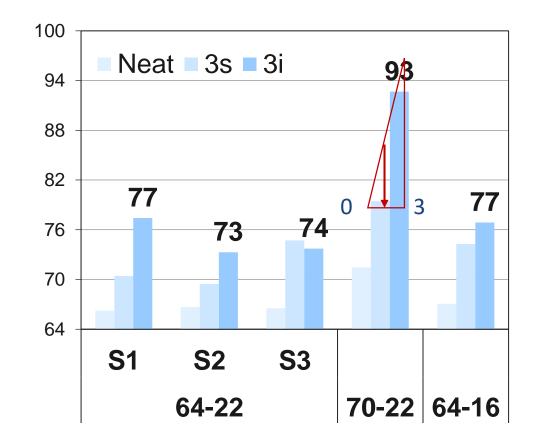
Determine optimum dosage of isocyanate-based modifier that would yield similar binder properties as SBS.

Solid Asphalt Modifier

Liquid Asphalt Modifier

TTI Experimental Materials

Binders	Modification	Aging	Tests
PG 64-22: S1 PG 64-22: S2 PG 64-22: S3 PG 70 -22 : S4 PG 64 -16: S5	0% (Control) 3% SBS: <i>s</i> 3% Isocyanate: <i>i</i>	Unaged RTFO + PAV0 RTFO + PAV20	PG-High PG-Low

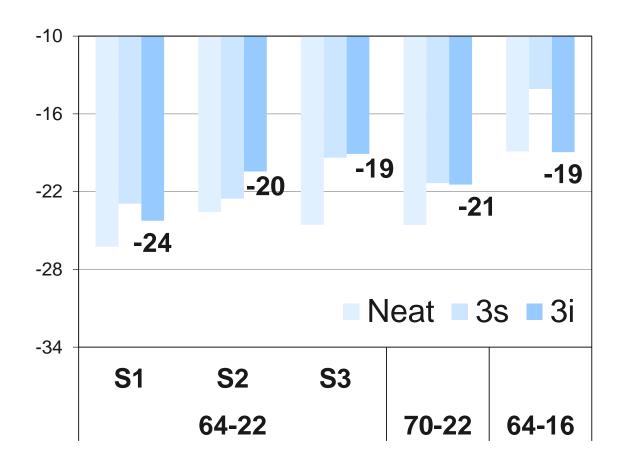


PG Testing: High Temperature

High temperature continuous grade

- Increased with SBS
- Increased more with isocyanate-based

Lower % isocyanate-based modification could yield equivalent high temperature PG.

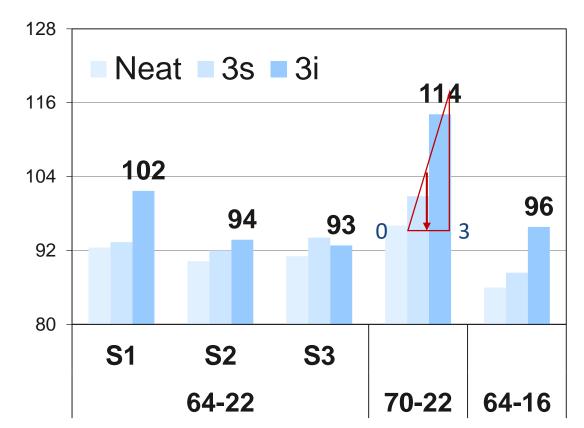


PG Testing: Low Temperature

Low temperature continuous grade

 Similar effects from SBS and isocyanate-based modifier

Lower % of isocyanate-based modifier could yield equivalent low temperature PG.

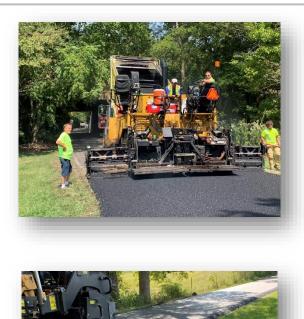


PG Testing: Useful Temperature Range

Useful Temperature Interval (UTI)

 Greater increase with Isocyanate-based modifier than with SBS at equivalent loading

Lower % isocyanate-based modifier could yield equivalent UTI.


TTI Conclusions

3% Isocyanate-based modifier compared to 3% SBS:

- Increased PG equivalent to same or more than SBS
- Increased UTI to equivalent to same or more than SBS

It may be possible to use less % of isocyanate-based modifier to achieve results equivalent to 3% of standard modification.

Paving Trials

Summer & Fall 2019

© Copyright 2020 BASF Corporation; All Rights Reserved

Evaluating Operational Feasibility of Isocyanate-based Modification

Asphalt Terminal

Mix Plant

Construction

Stability Mixing time Reheat/recycle

Pumpability Aggregate interaction Stiffness Performance Compaction Sticking/rolling

2019 Isocyanate-based Paving Trials in Europe and North America

Rutting Assessment: Midwest 1 Paving Trial

Mixture	Air Voids (%)	Passes	Rut Depth, mm	Average
Control	7	20,000	3.32	2.4
12% RAP / 4% RAS		20,000	3.4	
Isocyanate-based modifier	7	20,000	4.04	3.9
12% RAP / 4% RAS			3.83	

Hamburg Wheel Tracker (HWT) @50°C with reheated field sample

© Copyright 2020 BASF Corporation; All Rights Reserved

Cracking Assessment: Midwest 1 Paving Trial

Mixture	Air Voids (%)	Disp. (mm)	Post- Peak Slope (kN)	IDT Strength (kPa)	Fracture Energy, J/m ²	CT Index	Avg. CT Index	COV, %	
Control	7.2	4.2	-4.1	867.6	6,658	45.7			
Control	6.9	3.9	-4.2	901.6	6,696	41.8	11 6	6.6	le se
12% RAP / 4% RAS	7	3.9	-4.2	911.4	6,529	40.6	41.6 6.6		
12% KAF / 4% KAS	6.8	3.6	-4.5	984.7	7,109	38.1			
Isocyanate-based	6.8	4.5	-2.9	825.8	7,186	75.7			
Modifier	6.5	4.9	-3.1	829.7	7,775	80.9	73.8	6.7	
420/ DAD / 40/ DAS	6.7	4.8	-3.2	845	7,031	69.6		•	
12% RAP / 4% RAS	6.9	4.6	-3.2	858.4	7,168	68.8			

IDEAL-CT at 25°C with reheated field sample

Summary: Midwest 1 Paving Trial

County paving trial

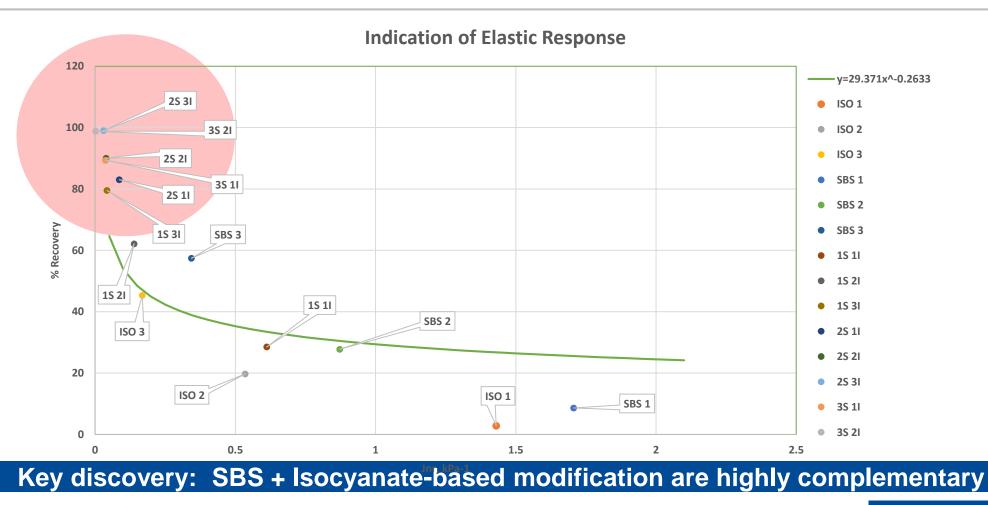
- Compared PG 58-28 to same binder modified to PG 64-28
- Mix design: DOT design, all crushed aggregate
 - 12% RAP / 4 % RAS
- Same mix, only variable was adding isocyanate-based modifier

What was proven

- Normal paving, no surprises
- · Little viscosity change when binder was modified
- No sticking, but very adhesive when cooled (tacky on shoes) → happy contractor
- Improvement in IDEAL-CT (cracking resistance)
- Similar HWT results (rutting/stripping)

Formulation Study and Assessment

BASF Corporation Internal Study



Formulation Study: Isocyanate-based, SBS, and Combined (PG 64-22)

	Viscosity mPa.S (cP)	SHRP Grading	Temperature Range (°C)
Unmodified	404	64-22	91
1% Isocyanate-based Modifier	550	70-22	94
2% Isocyanate-based Modifier	675	70-22	97
3% Isocyanate-based Modifier	688	76-16	98
1% SBS	583	64-22	94
2% SBS	817	70-22	98
3% SBS	1138	76-22	101
1% SBS 1% Isocyanate-based Modifier	813	70-22	98
1% SBS 2% Isocyanate-based Modifier	938	76-22	105
1% SBS 3% Isocyanate-based Modifier	950	82-22	108
2% SBS 1% Isocyanate-based Modifier	1209	76-22	104
2% SBS 2% Isocyanate-based Modifier	1446	82-22	111
2% SBS 3% Isocyanate-based Modifier	1338	88-22	114
3% SBS 1% Isocyanate-based Modifier	1917	82-22	109
3% SBS 2% Isocyanate-based Modifier	2221	88-22	116

MSCR Results for SBS, Isocyanate-based, and Combined (PG64-22)

Isocyanate-based Modification Research Conclusions

Binder Improvements

- 1. SBS compatibility and enhancement.
- 2. Significantly increased UTI.
- 3. Does not separate when stored after modification.
- 4. Limited increase in viscosity after modification.
- 5. No change to Superpave testing and PG Grading.

Mix Improvements

- 1. Superior binder and aggregate adhesion.
- 2. IDEAL-CT cracking resistance improved.
- 3. Better HWT rutting and no stripping.
- 4. Improved compaction with less roller passes.
- 5. Less asphalt build-up on truck beds and/or hand tools.

Isocyanate-based modification is an extremely promising innovation for asphalt applications

Acknowledgements

Texas A & M Transportation Institute (TTI)

T) Western Research Institute

ullet

Dr. Jean-Pascal Planche

Dr. Michael Elwardany

- **Blankenship Asphalt Tech & Training**
- Mr. Phillip Blankenship, P. E.
- Mr. Zachary McKay

• Dr. Edith Arambula

Dr. Pravat Karki

- Dr. Jon Epps
- Dr. David Newcomb

BASE We create chemistry